Laboratory divergence of Methylobacterium extorquens AM1 through unintended domestication and past selection for antibiotic resistance
نویسندگان
چکیده
منابع مشابه
Metabolic engineering of Methylobacterium extorquens AM1 for 1-butanol production
BACKGROUND Butanol is a promising next generation fuel and a bulk chemical precursor. Although clostridia are the primary industrial microbes for the fermentative production of 1-butanol, alternative engineered hosts have the potential to generate 1-butanol from alternative carbon feedstocks via synthetic metabolic pathways. Methylobacterium extorquens AM1, a facultative methylotrophic α-proteo...
متن کاملCo-Consumption of Methanol and Succinate by Methylobacterium extorquens AM1
Methylobacterium extorquens AM1 is a facultative methylotrophic Alphaproteobacterium and has been subject to intense study under pure methylotrophic as well as pure heterotrophic growth conditions in the past. Here, we investigated the metabolism of M. extorquens AM1 under mixed substrate conditions, i.e., in the presence of methanol plus succinate. We found that both substrates were co-consume...
متن کاملThe second subunit of methanol dehydrogenase of Methylobacterium extorquens AM1.
The nucleotide and deduced amino acid sequence of a novel small (beta) subunit of methanol dehydrogenase of Methylobacterium extorquens AM1 (previously Pseudomonas AM1) has been determined. Work with the whole protein has shown that is has an alpha 2 beta 2 configuration.
متن کاملGenetic organization of methylamine utilization genes from Methylobacterium extorquens AM1.
An isolated 5.2-kb fragment of Methylobacterium extorquens AM1 DNA was found to contain a gene cluster involved in methylamine utilization. Analysis of polypeptides synthesized in an Escherichia coli T7 expression system showed that five genes were present. Two of the genes encoded the large and small subunits of methylamine dehydrogenase, and a third encoded amicyanin, the presumed electron ac...
متن کاملGlyoxylate regeneration pathway in the methylotroph Methylobacterium extorquens AM1.
Most serine cycle methylotrophic bacteria lack isocitrate lyase and convert acetyl coenzyme A (acetyl-CoA) to glyoxylate via a novel pathway thought to involve butyryl-CoA and propionyl-CoA as intermediates. In this study we have used a genome analysis approach followed by mutation to test a number of genes for involvement in this novel pathway. We show that methylmalonyl-CoA mutase, an R-speci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Microbiology
سال: 2014
ISSN: 1471-2180
DOI: 10.1186/1471-2180-14-2